

Siamese Network for Fake Item Detection

(Discussion Paper)

¹Erica Coppolillo, ²Daniela Gallo, ¹<u>Angelica Liguori</u>, ¹Simone Mungari, ³Ettore Ritacco, ⁴Giuseppe Manco

¹ University of Calabria, Italy
² University of Salento, Italy
³ University of Udine, Italy
⁴ Institute for High Performance Computing and Networking, National Research Council, Italy

Scenario

- Goal. Monitoring item authenticity in the supply chain for discovering fake/counterfeit products
- Idea. Developing a counterfeit detection system based on a deep learning approach
- Solution. Mapping item descriptors, i.e., identifiable features, in a lowdimensional space exploiting Siamese Neural Network

Problem Definition

Methodology Overview

- A set of identifiable features, named **descriptors**, allow discovering alterations of the items
 - Features should be chosen based on the value of the exchange item
- A Siamese Neural Network is adopted for integrity check
 - Mapping the input (delivery and purchased item descriptors) into data points lying on a latent space
 - Identifying counterfeit items based on their generated embedding
 - Data that exhibit similar characteristics, i.e., original item, are in the same area w.r.t. data with different properties, i.e., counterfeit item

Siamese Neural Network

- Siamese Neural Network is composed of three modules:
 - Subnetwork module that maps a descriptor *x* into a low-dimensional space *z*
 - **Distance module** that outputs the Euclidean distance between two embeddings
 - **Exponential module** that applies a negative exponential function to provide a similarity score
- The subnetwork module exploits the ResNet architecture and a combination of Linear and Dropout layers

Case Study

- Identify counterfeit signatures
- Dataset of handwritten signatures available on <u>Kaggle</u>
- 140 real signatures of 28 subjects
 - Each of them provides 5 signatures
- 140 corresponding fake signatures

Case Study

- We generated both the signature couples (real, real) and (real, fake).
 - Couples of real signatures have been tagged with label 1
 - Couples of fake signatures with label 0
- Final dataset of 1400 tuples, equally partitioned

Experiments

Conclusion and Future Works

- A Siamese Neural Network using two sub-networks to validate the product authenticity is proposed
- Preliminary results on a public dataset prove the effectiveness of the proposed model
- As future works, we plan to consider sets of feature descriptors depending on the item price and explore more sophisticated ways to strengthen security on multiple levels

Thank you for your attention! Questions?

Angelica Liguori angelica.liguori@dimes.unical.it https://angielica.github.io