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Scenario

• Goal. Generate realistic outliers for enabling the learning of an outlier
detector

• Idea. Develop an anomaly detection and generation system based on
unsupervised deep learning model

• Solution. Combine Variational Autoencoders and Generative
Adversarial Networks
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Adversarial Reconstruction Network
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Adversarial Reconstruction Network

• The adversarial game has associated the discriminator loss

• and the generator loss
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Experiments
RQ1. Does the outlier generator produce realistic outliers? How does it 
affect the predictive power?
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Experiments
RQ2. In real-world scenarios, can the classifier component be used to 
predict unobserved anomalies? How does its predictive power compare 
to other state-of-the-art approaches?



Experiments
RQ3. Which components of the model contribute to the overall quality? 
How do the architectural choices affect the accuracy of the resulting 
predictions?



Conclusions and Future Work

• ARN: A twofold neural architecture aimed at
generating and identifying anomalies

• Experiments prove the capability of the model in
generating realistic outliers for enabling the learning
of an outlier detector

• As future work, we plan to study a generalization of
ARN towards a fully unsupervised setting

• The proposed approach requires samples labeled as
normal



Thank you for your attention!


