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Scenario

® Identify anomalies in blockchain networks, i.e. attacks on blockchain

0 These represent extremely rare events and typically do not share common patterns

® An anomaly detection system based on a deep autoencoder ensembles is proposed



Problem definition

e Data: a sequence of events observed in a time window

O Each event is represented by a feature vector

e An anomaly is a feature vector which deviates from the normality

® Goal: identification of deviances



Methodology

e Adapts the snapshot ensemble method to a sequential unsupervised scenario exploiting an
encoder-decoder model as model base
O replicate an input sequence by producing a reconstructed copy from the compressed
representation of the input

o difference between the input and reconstructed sequences represents the anomaly score

e Several base models have been instantiated, whose outlierness score is finally averaged



Encoder-Decoder Model

® The model is composed by:
0 Encoder that maps the original input x (a sequence of events observed in a time window) into a
latent space, producing an embedding z

o Given g, the decoder aims at generating an output y as close as possible to original input (x)

® Encoder and Decoder are modeled as Recurrent Neural Networks (RINNs)
o Long Short-Term Memories (LSTM) is used



Snapshot Ensemble Encoder-Decoder (SEED)

o Idea:

O

O

An autoencoder is randomly
initialized devised as M;
Then, the procedure iteratively

learns model M; by re-training M;;
with the initial learning rate 1 for a
fixed number of epochs

At each epoch m is progressively
lowered

M, is then collected in the ensemble

and the learning rate is reinitialized
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Study case

e SEED model is applied to the Ethereum Classic (ETC) blockchain to identity attacks
® Dataset is available on Kaggle
e Sample of ETC blockchain spanning over a period of four years (July 2015 - July 2019)

® It has experienced two (known) successful attacks: DAO (18 June 2016) and 51% (5-8
January 2019)



Evaluation protocol
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e Evaluation steps:

1. we train model on D; and test it on T} (DAO attack)

2. we train model on Dy and test it on T, (51% attack)

3. we train model on D; U D, and test it on T, (51% attack)

2019 Attack



Experiment 1: DAO attack




Experiment 2: 51% attack




Experiment 3: 51% attack
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Experiments on Synthetic Data

e Sensitivity analysis of SEED in a controlled scenario
® Data were generated according to the following procedure:

o produce a sequence D (is a matrix whose rows represent the sequence events and the
columns represent the feature for each event). Each element is generated from a fixed

gaussian distribution
o randomly select 7 points and for each point select a feature of relevance

o Inject uniform noise in the chosen feature



Experiments on Synthetic Data
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Conclusions

e In this work we proposed an unsupervised ensemble deep architecture for anomaly

detection
e We evaluate the model on both real data, the ETC blockchain, and synthetic ones
e Experiments prove our model capability to effectively detect attacks

e We plan to study effective strategies for selecting the best weak learners during the
learning phase to improve the detection capabilities in both unsupervised and

supervised scenarios
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